Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Sand comments regarding this burden estimate or any other aspect of this collaction
of information, including suggestiors for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
{0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents shouid be awara that notwithstanding any other provision of law, no person shall be
subject to any penaity for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From - To}
02-07-2005 Final Report Jan 2004 - May 2005

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Applying Light Mapping Techniques to Vis-Sim Databases WS56HZV-04-C-0101

Bb. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Mr. Michael M. Morrison

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER
RealTime Technologies, Inc.

1517 N. Main St. N/A
Royal Oak, M1 48067

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSI(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army TARDEC TARDEC - NAC
National Automotive Center

6501 E. 11 Mile Road 11. SPONSOR/MONITOR’'S REPORT
AMSRD-TAR-N MS: 157 NUMBER(S) #

Warren, M1 48397-5000 T I4q0Y

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited Distribution

13. SUPPLEMENTARY NOTES
Unclassified

14. ABSTRACT

The Gaming and Visualization and Simulation industries have recently focused on shaders and stencil shadow volumes to add
realistic lighting and hard shadow effects to the scene. While producing great looking results these techniques are still
computationally expensive at run time, especially when simulating many light sources. For most databases and simulations the
lighting and shadow effects for the terrain geometry are diffuse, static in nature, and not greatly affected by dynamic entities. Using
this assumption the diffuse lighting, shading, and shadowing effects of all static light sources can be pre-rendered into the database.
This technique is generally known as “Light Mapping” and has been in wide use in the gaming industry since ID Software’s Quake 1.
This paper will present the tool set and methods that RTI developed in order to apply this technique to OpenFlight models. This
work was supported by an SBIR Phase I Option contract (No. W56HZV-04-C-0101) in conjunction with the US Army TARDEC.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER |19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT | c. THIS PAGE ABSTRACT ‘P’:GES Dr. Alexander A. Reid
. 19b. TELEPHONE NUMBER (Include area code)
Unclassified N/A
14 586-753-2212

Standard Forr 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

1uqoY

APPLYING LIGHT MAPPING TECHNIQUES TO VIS-SIM DATABASES

Michael M. Morrison
Sr. Research Scientist
Realtime Technologies, Inc.

Abstract

The Gaming and Visualization and Simulation
industries have recently focused on shaders and stencil
shadow volumes to add realistic lighting and hard
shadow effects to the scene. While producing great
looking results these techniques are still
computationally expensive at run time, especially when
simulating many light sources. For most databases and
simulations the lighting and shadow effects for the
terrain geometry are diffuse, static in nature, and not
greatly affected by dynamic entities. Using this
assumption the diffuse lighting, shading, and shadowing
effects of all static light sources can be pre-rendered
into the database. This technique is generally known as
“Light Mapping™ and has been in wide use in the
gaming industry since ID Software’s Quake 1. This
paper will present the tool set and methods that RTI
developed in order to apply this technique to OpenFlight
models. This work was supported by an SBIR Phase [
Option contract (No. WS56HZV-04-C-0101) in
conjunction with the US Army TARDEC.

Introduction

A “Light Map” is simply a texture map that
encompasses the diffuse lighting effects in an
environment. Light Maps can be intensity maps as

shown below, or can be full RGB images for use with
colored light sources.

v

a
Fag 1

% ‘*

Figure 1 - Light Mapping |11}

Figure 1 depicts the simple multi-texture operation used
in Light Mapping. The image on the left is the decal
texture, the image in the middle is the Light Map, and
the image on the right is the product of the two. The
intensity of the Light Map modulates the attenuation of
the surface providing the diffuse lighting effect - in the
same way vertex colors do in the OpenGL lighting
equation.

The series of screen shots in Figure 2 show the texture
compositing from the decal to the Light Map to the final
result in a driving simulation database.

Figure 2 - Light Mapped OpenFlight Database |GB]

Note the soft shadows cast on the terrain surface
around the gas pumps and the Phong-shaded spot light
effects from the street lights. Four spot lights and two
point light sources were used to render this database.

While this technique has been around for some time,
recently released games still use Light Mapping because
it is so compelling.

i M Loh

MFiguré 3 - Counter Strike {12} -

Figure 3 shows an outdoor scene from the popular PC
video game “Counter Strike - Source” by Valve
Software. Counter Strike - Source is based on the Half
Life 2 engine which uses Light Mapping extensively for

shadowing and local lighting effects. Half Life 2 was
released in late 2004 / early 2005.

Light Mapping Construction

Light Maps are constructed in a pre-processing step
potentially using detailed per-pixel lighting and “soft”
shadowing models. An individual Light Map texture is
rendered for every polygon in the database using either
a “local” (also called ‘direct’) or “global” illumination
model. The resolution of these light maps is based on
the lumel per meter ratio assigned to the particular
surface, as described later. The individual Light Maps
are then packed into some minimal number of larger
texture maps to enhance runtime performance.

Only diffuse lighting effects can be pre-computed
because they are view-independent. This means that
Light Mapping is generally not useful to pre-render
environment-mapped effects and specular lighting as
they are both view-position-dependent. Methods to add
several view-dependent effects are presented in a later
section.

[llumination Model

Light Maps are generally sampled over a regular grid,
similar to that shown in Figure 4.

Figure 4 - Lumel Sampling

Light Map samples are known as “lumels” and are
shown as red dots above. A lumel represents one texel
in the final Light Map texture. Rays are cast from each
lumel to every light source in the scene, and an
illumination model is run to determine the lighting
intensity and color at that point. The illumination model
may take shadowing into account as well as other
environmental effects such as clouds and sky color.

A lumel per meter ratio is pre-selected for each surface
based on the desired resolution of the shadow or light
source effects on that surface. A greater lumel per
meter ratio will provide greater detail in the final Light
Map, but will require more texture memory and more
rendering time.

Local [llumination

OpenGL’s fixed-function pipeline uses the equation
shown in Figure 5 to compute per-vertex lighting.

verrex _ colcr -

EM 5510V naerind =
ambientipem oaei *ambierfyasna; -

f 3
v o«
2
ked+kd+ked”
x-1
Z wn LNy aeial
0 max(l enU)* diffeses gy * dilffusenpmrins +
m a'c(::on_ﬂ)"m*‘” *peculorgy Y Spacrian, g ;
/

Figure 5 - OpenGL Lighting Equation [cite]

The Local I[llumination model computes lighting per-
pixel using an equation similar to that of Figure 35,
minus the specular term. Most Light Mapping
applications also simplify the material and emissive
terms as well, assuming they are either 1.0 or 0.0 as
appropriate. In addition to the luminance, the model
also takes into account shadowing effects. Pixels in-
shadow from a particular light source are given a default
“shadow ambient” value that represents the indirect
lighting contribution at that point.

It is also possible to mark certain surfaces as having a
full intensity light map to appear uniformly lit, rather
than being affected by any light sources in the scene.
This is similar to the effect in Multigen Creator of
setting a face’s Shade Mode to “Flat.”

Figure 6 is a portion of the Light Map from the scene in
Figure 2. It was computed using the Local 1llumination
model.

Figure 6 - Local Illumination

The white rectangle in the center is the illuminated
Chevron station sign. It has been marked as having a
full intensity Light Map, but does not have a light
source associated witl it. As shiown in Figure 2 this
makes the Chevron station sign appear fully lit. The

illuminated area to the right is from the street light,
which is set up as a spot light source.

Global [Hlumination

Global Illumination takes the indirect lighting of all
surfaces into account when computing the Light Map
color and intensity. One of the more popular global
illumination models is known as “Radiosity”. In the
book “Real-Time Rendering” Thomas Moller describes
Radiosity: “Light bounces around in an environment;
you turn a light on and the illumination quickly reaches
a stable state. In this stable state, each surface can be
considered as a light source in its own right. When light
hits a surface, it can be absorbed, diffusely reflected, or
reflected in some other fashion (specularly,
anisotropically, etc). Basic radiosity algorithms first
make the simplifying assumption that all indirect light is
from diffuse surfaces. This assumption fails for places
with polished marble floors or large mirrors on the
walls, but for most architectural settings, this is a
reasonable approximation.”[CITE: R-TR, p278]

Some packages render radiosity directly, others
calculate radiosity using the results of a local
illumination model. Figure 7 is a radiosity rendering
using the results of Figure 6 as a baseline.

Figure 7 - Global Illumination

This Light Map shows illumination in the area in front
of the Chevron sign whereas Figure 6 does not.

Figure 8 — LI (above) VS GI (below)

The images in Figure 8 show the differences in the
scene when applying the decal texture as well. The
image below looks more realistic due to the reflected
lighting contribution from the Chevron sign.

Global [flumination takes significantly longer to render
than Local Illumination (possibly 10x or better) due to
the additional computation involved. However, there
is no additional runtime penalty.

Light Map Packing

Once individual surface Light Maps have been rendered
they must be packed into a larger texture map.

Figure 9 shows a Light Mapped house — a free
OpenFlight model downloaded from CGSD’s web site.

Figure 9 - Light Mapped House

The window on the left hand side of the figure shows
the single packed Light Map for the scene. This scene
was rendered using a single directional light source that
was yellow in color, producing the yellow and gray light
map.

Final Light Map resolution is determined by the lumel
per meter ratio and the number of polygons in the
database. The number of light maps will further be
determined by the maximum texture resolution allowed
on the particular architecture. In the PC world, Nvidia
allows a maximum resolution of 4096x4096, while
ATI’s maximum resolution is 2048x2048.

Justification

Light Mapping Advantages

The Light Mapping technique has several advantages
over per-vertex lighting, shader-based lighting, and
either stencil shadow volumes or shadow mapping
techniques, especially for terrain lighting.

Unlike dynamic effects such as shaders and shadow
volumes or shadow mapping, Light Maps are generally
pre-computed and static. This generally means a fixed
“time of day” is pre-computed as well as fixed shadow
angles and fixed light source state and position.

While long simulation runs where time of day must
change appropriately is an issue for some, fixed time of
day (and therefore shadow angles and light states) has
not generally been a problem for Realtime
Technologies. Several dynamic effects, including the
ability to change a light source’s state, will be addressed
later.

As a side note, “night time” scenes have been selected
to illustrate Light Mapping in most images because they
show off the technique very well. Light Mapping is

equally effective in daylight scenes, as shown in Figure
9 and Figure 3.

The following sections will compare the advantages and
disadvantages of Light Mapping verses other
techniques.

Vertex Lighting

Vertex lighting can produce scenes that are visually
compelling. The quality of vertex lighting approaches
is generally dependent on the types of light sources
required and the tessellation level of the database.
Infinite directional lights, such as the Sun, tend to work
reasonably well with vertex lighting, whereas spot light
sources only work well if a reasonable collection of
terrain vertices lie in the vicinity of the spot light cone.
Point lights can have the same problems as spot lights
depending on the desired effect. In addition, the vertex
lighting model of OpenGL, and most image generators,
does not take occlusion and/or shadowing into account.

Multigen-Paradigm’s Creator provides a feature
allowing the user to “Calculate Shading.” This can be
used to update vertex colors to “bake™ the lighting into
the model. Figure 10 shows the Chevron station lit
using this approach.

Figure 10 - Creator Vertex Lighting

This scene shows the spot light sources as having little
or no effect on the intersection polygon, as none of the
verts lie directly within the spot light cone. This is one
of the typical issues presented by vertex lighting. There
is also no scene shadowing. However, this model will
run on any Image Generator that understands
OpenFlight files at full speed.

Figure 11 shows the Light Maps rendered from the
same set of light sources used in the previous image.

Figure 11 — Light Mapping

The outlines of the spot light cones from the street lights
are clearly visible, as are the shadows cast from various
elements in the scene.

Tests at Realtime Technologies have shown that issuing
a secondary texture map, with or without vertex colors,
produces a performance penalty of less than 10% on
older ATI Radeon 9800 class hardware. The
performance difference may be less on newer graphics
cards.

Shader-Based Lighting

Shaders are extremely useful. They are definitely
“what’s next” and work well for a fair number of
situations right now. RTI uses shaders in a number of
applications, even in conjunction with Light Mapping.
In the future shaders will definitely replace Light
Mapping as the rendering method of choice. However,
the runtime efficiency of a multi-texture operation
cannot currently be matched by shaders for the
situations where Light Mapping works well. This
translates to more effective light sources and greater
geometric detail in a given scene.

By way of comparison, the following two (conceptual)
GLSL shaders show the code necessary to implement
light mapping and the code necessary to implement a
single real-time Phong-shaded diffuse light source.

Vertex Shader

void
main
{
Pass along textures and color
gl_TexCoord[0] = gl_MultiTexCoordo;
gl_TexCoord (1] = gl_MultiTexCoordil;

(void)

Transform Position
gl_Position = Ztransform();

Fragment Shader

void
main{ void)

{

sample textures

decalC = tex2D(decalMap, gl_TexCoord[0].st);
lightC = tex2D(lightMap, gl_TexCoord[1l].st);
output color value

gl_FragColor = decalC * lightC;

Figure 12 - Light Mapping Shader

The vertex shader in Figure 12 simply passes through
the values of the texture coordinates for the decal and
light map textures, and transforms the gl Position using
the builtin firansform() method. The fragment shader
samples the two textures and sets the fragment color to
be their product. Note that no per-vertex normals are
necessary, nor are any material colors for lights or
polygonal surfaces.

In cases where an intensity map is used as the decal
texture an additional color may need to be passed per
vertex and multiplied in the fragment shader.

Vertex Shader

void
main(void)
{
pass along decal texture and color
gl _TexCooxrd([0) = gl_MultiTexCoord0;

Transform Position
gl_Position = ftransform();

pass along eye space vert pos & norm
N = gl NormalMatrix * gl_Normal;
EP = gl _ModelViewMatrix * gl Vertex;
LP = gl_ModelviewMatrix *
gl_LightSource[0] .position;
}

Fragment Shader

void
main{ void)

{

sample texture

decalC = tex2D(decalMap, gl_TexCoord[0].st);
interpol.ated over the surface

L = LP - EP;

N = norma.ize(N);

D =1/ length(L); // hack attenuation

L = norma.ize (L) ;

diffuse = clamp(dot(L, N), 0.0, 1.0) * D;
gl_FragCo.or =
deca.C =*
((gl_FrontMaterial.ambient *
gl_LightSource (0] .ambient) +
(gl_FrontMaterial.diffuse +
gl_L:.ghtSource[0] .diffuse) *
diffuse);

Figure 13 - Single Point Light Shader

The vertex shader in Figure 13 is significantly mare
complex. First, it passes on the texture coordinates of

the decal texture. It must then transform the incoming
normal into eye coordinates, the incoming vertex into
eye coordinates, and the light position into eye
coordinates. These values are linearly interpolated
across the surface for the fragment shader.

The fragment shader first samples the decal texture. It
must then compute the vector from the surface to the
light, and normalize the interpolated surface normal.
‘D’ is a hack linear attenuation factor for the point light.
After N and L are normalized their dot product
determines the lighting contribution, with D attenuating
it based on distance. The final fragment color is
computed using the light source and polygonal ambient
and diffuse materials as well as the light source diffuse
and ambient factors. Finally, this value is multiplied by
the decal texture sample to get the result. The
contribution due to specular effects has deliberately
been eliminated from this example, as specular lighting
cannot be rendered into a Light Map. Note that per-
vertex normals are required, and per-polygon materials
may be required depending on the desired effect.

As is evident from the conceptual shaders the light
mapping approach is extremely efficient compared to
just a single Phong-shaded diffuse point-light source.
Especially considering that any number of light sources
can be represented within a single light map texture, and
the light source shader does not compute any shadows.

The advantage to the shader code, however, is that it
will light any element in the scene, including dynamic
entities. Scene optimizations are possible with this
technique, such as virtualized OpenGL light sources
and/or other techniques to reduce the computational
burdon. With few light sources in the scene this
technique works well, but it does not scale as well as
Light Mapping.

Dynamic Shadowing

Dynamic shadowing techniques such as stencil shadow
volumes and shadow mapping can be efficient and
produce good looking results. A direct comparison of
the techniques used to compute the shadows themselves
will only be briefly discussed here.

The shadow mapping technique is inherently a two pass
algorithm, requiring rendering the scene once from the
lights perspective and again from the view perspective
for all geometry to cast or receive shadows. After
rendering from the lights perspective, the Z-Buffer
contents are stored and used in a fragment comparison
operation while rendering from the view perspective.
This comparison determines whether the fragment is in-
shadow. It can be tricky to render differing light source
types and multiple light sources using this technique.

The stencil shadow mapping technique requires that
silhouette edges of all objects casting shadows in the
scene be traced and intersected with some distant
clipping plane. Geometric faces are then built from the
silhouette edges to the intersected clipping planes. This
geometry is then rendered into the stencil buffer using
various methods (ZPass, ZFail) and various operations
for the front and back faces of this geometry. Finally, a
single full-screen translucent polygon is rendered, with
the stencil buffer enabled, producing a “shadowed”
effect everywhere it was drawn to the scene. There are
certainly variations on this technique, but this is the
basic idea.

Both of these techniques work well to allow dynamic
geometry to shadow the terrain. They are somewhat
wasteful for static geometry, especially in the cases of
fixed light sources and immobile terrain and buildings.

While it will not be covered here, using a shader it is
possible to combine these shadowing techniques with
light mapping to produce shadowed effects from
dynamic entities and mix them with the pre-rendered
light maps. This is the technique that Half Life 2 uses
to shadow dynamic entities.

Light Map Rendering Tools

As mentioned earlier, this work was funded by an SBIR
Phase [Option. Due to budgetary constraints it was not
practical for RTI to write its own Light Map rendering
tool. The ultimate goal was the ability to Light Map
“industry standard” OpenFlight format databases, with
as little modification to them as possible. OpenFlight
version 15.7 introduced multi-texturing, so it was clear
that it would be a viable output format.

An initial search found no commercial or open source
Light Mapping or Radiosity rendering packages that
supported OpenFlight directly. The majority of the
packages found only supported simple file formats such
as OBJ or 3DS. Desiring to support LODs and other
OpenFlight hierarchy it would have been difficult to
convert files to and from these formats for pre-
processing. RTI decided that it was necessary to find a
tool that would allow a custom database importer and
exporter that could be used with OpenFlight.

Many light mapping tools were identified, and several
were evaluated. Ultimately, Light Map Maker (LMM)
by Windssoft was selected as the tool of choice for the
Phase I Option work. Gile[s] by Mikkel Fredborg came
in a close second due to its well thought out user
interface, and its ability to import multi-textured
models.

Review

An internet and industry-wide review of light mapping
tools and software was performed in order to select a
light mapping product. RTI was specifically looking for
a package that would satisfy the following criteria:

1) The tool should be graphical to allow viewing
of the rendered database without having to save
the file and reload it in a different tool.

2) The tool needs to allow a “plugin” to be written
to allow import of OpenFlight files.

3) The tool needs to allow per-face attributes to
be stored that will allow the exporter to
correlate OpenFlight faces with tool faces.

4) At the minimum, the tool needs to support
standard LightMapping techniques.

5) The tool needs to support packing lightmaps in
one large texture to minimize OpenGL state
change during rendering.

6) Colored light sources should be supported.

7) Soft Shadow casting should be supported.

8) The tool needs to support some method of
export “plugin” or write out an open file format
that we can use to determine how the light
maps were applied to the faces.

9) Preferably, the tool should allow Radiosity
rendering in addition to LightMapping.

10) There should be an open relationship with the
vendor of the product such that extensions to
the product could be negotiated and
forthcoming.

11) An Open Source solution is preferred, as this
allows RTI to assume control of extensions, if
necessary.

A report was prepared summarizing these findings.
Both Standalone GUI and Library-based tools were
examined and evaluated. Excerpts of this report are
presented below.

Stand-Alone Light Map Packages

The programs listed below provide their own graphical
user interface, light map rendering, and import/export
features. The major function of these packages is to
create and export light maps.

Light Map Maker (LMM)

This product stands out immediately for providing a
C++ import/export SDK. The import feature allows
ancillary data to be passed though facilitating
integration with OpenFlight. The standard lighting
features include: brightness rectification, blur, expose
and smoothing,

LMM supports Radiosity, Mirror, Caustics and standard
ray-cast Light Mapping, although the benefits of Mirror
and Caustics are questionable. Through the
import/export APl all scene elements including light

sources, geometry, textures, and vertex colors may be
imported and exported.

LMM’s user interface takes a while to get used to.
Some mouse movements seem counter-intuitive,
although this is somewhat expected as all 3D interfaces
are implemented differently.

Global lllumination Editor (gile[s])

The gile[s] application has a long feature list with a nice
GUIL. Some of the light map features include:
transparency, masking, double sided materials, and a
fast sky light (to simulate outdoor scenery). The import
plug-in SDK is operational, however no ancillary data is
allowed on a per-face basis, and all examples are written
in “Blitz Basic”. After implementing a partial loader it
was discovered that gile[s] was very slow on handling
large databases and was therefore abandoned.

Nitrogen LightMapper

Nitrogen is an open source light mapping application.
The entire program is essentially a single dialog window
with a settings toolbar at the bottom. It is fairly intuitive
to use.

The source code for Nitrogen was written in Pascal, and
the rendering engine produces visible errors on most
scenes. It was determined that using this package would
not be a viable option.

Open-Source Radiosity Renderers:

Several open source Radiosity rendering packages were
identified.

FSRad

This is an open source radiosity rendering library that
comes with several example file import
implementations. Out-of-the-box it supports ENT, OCT
and ASE file formats, none of which appear to be
mainstream. It did not provide a GUI, and does not
appear to be actively supported. An amount of work
would be required to shape this for use as a user-
friendly rendering system, but it is definitely an
interesting package especially as a back-end to an
existing tool. Commercial usage requires author
approval.

RadiosGL

This package is a radiosity rendering library developed
primarly under Unix. It supports MDL format files for
input, and RGL for output, neither of which is popular
or standard. RTI could not get the examples to work
properly, nor does it appear this package is actively
supported.

Light Map Tools Conclusions

Light Map Maker by Windssoft was chosen as the basis
for further development for the following reasons:

1) LMM has a decent GUI; allows plugins;
supports soft shadows, colored light sources
and light map packing.

2) LMM produces reasonable
relatively quickly.

3) The focus of this effort is on light maps rather
than Radiosity for the time being.

4) Example loaders were included and written in
C++.

5) An import loader was already partially written,
and as such the Import API was understood.

6) The performance of the GUI was reasonable
even when relatively large terrains were
loaded.

7) RTI has had contact with the vendor of this
product in the past, and they seem fairly
responsive.

Light Maps

The following sections will describe how LMM was
extended to support the OpenFlight file format, and
OpenFlight constructs.

Light Map Maker and OpenFlight

Geometry Import / Export

In order to use LMM with OpenFlight models, custom
Importer and Exporter plugins were necessary.
Typically, RTI uses a modified version of an Open
Source OpenFlight loader for the majority of its work.
However, this library is a loader only so an alternate
OpenFlight file reader/writer library was required.
Multigen-Paradigm’s OpenFlight API was selected to
provide these capabilities. Using this API it is fairly
straightforward to load an OpenFlight file, walk the
hierarchy, modify it, and save it back out to disk.

LMM was designed to understand “polygon soup”
models — or freeform collections of polygons obeying
no particular spatialization or ordering. It does not
support hierarchy such as groups, switches or LODs.
As such, the importer is not able to specify these things
and have them stored along with the geometry. It is
therefore not possible to simply take the data structures
provided by LMM during an export operation and re-
construct the same OpenFlight file that was imported, as
the hierarchical information has been lost.

RTI’s solution to this problem was the following;:

1) Load the OpenFlight file using the OpenFlight
APL

2) Scan the model for Faces that satisfy current
constraints, mainly the LOD level.

3) Store a pointer to the OpenFlight Face record
in the userData field of the polygon being
imported into LMM.

4) Retain the OpenFlight model in memory while
LMM is modifying it.

Then, during export:

1) Extract the OpenFlight face record pointer
from the userData field of each polygon being
exported.

2) Extract the secondary texture coordinates from
each export polygon vertex and apply them to
the correct OpenFlight face vertex.

3) Add the light map texture(s) to the OpenFlight
texture palette.

4) Write the database to disk.

The combination of these techniques allows LMM to
modify the texture maps and the exporter to write the
entire OpenFlight file back to disk, even though LMM
does not understand anything about the rest of the
OpenFlight hierarchy.

LOD Solution

LOD Inport

One of the major differences between OpenFlight and
most other 3D file formats is the presence of a
structured hierarchy consisting of LODs. LMM’s
original interface was designed around having a single
scene loaded at a time. These scenes contain a
collection of geometry, geometric state, and light
sources.

The original version of LMM did not support LODs, so
RTI worked with Windssoft to introduce the notion of
progressive LODs into the LMM product. For each
imported surface, the LMM Import API now allows the
user to specify an integer LOD level. Using the
OpenFlight API it is fairly easy to begin the mgWalk()
at the highest detail with mgMostDetail() and continue
to add lower LOD levels using mgLessDetail(). Once
insidle LMM, the GUI will allow viewing of the
individual LODs, as well as successively rendering each
LOD using the single set of light sources available.

LOD Rendering

Light maps and shadows should be rendered from the
highest possible LOD, because this will provide the
most resolute imagery. Given that a model broken
down into individual LODs as described above will
share some polygonal surfaces between LODs, the
loader will flag all surfaces with the highest LOD they
are a member of. The high LOD will contain many

polygons that are also in lower LODs. Lower LODs
will contain fewer and fewer polygons as they will have
been previously contained in higher LOD levels.
During the import process surfaces that are present in
higher LODs are flagged as having “No Light Map,”
which is an LMM surface option described later. These
surfaces are considered during shadow computation, but
are not considered for rendering themselves. This also
accelerates the rendering process for lower LOD levels.
Figure 14 shows the Highest and Lowest LODs from a
database.

Figure 14 - LOD Rendering |cite]

The upper image is the highest LOD and the lower
image is the lowest LOD. The “ground” polygon
appears in all the LODs, but has been shadowed only
from the highest .OD geometry.

OpenFlight Import Dialog

Several options are presented to the user during an
OpenFlight file import. Figure 15 shows the import
dialog.

Opent light Impart

Loo
A
JLCE U Thah el IR
Import AS
* Sirface Terrain

v Delnsate LOD Evcluded Surfaces
Force Defauk Patch See

0. 100000
Dafault Patch Se |0, 250000
(0.500000 -

Figure 15 - Import Dialog

The model is scanned and individual LOD levels are
presented as options for import. The default import
option is to load all LODs. However, it is possible to
load, render, and save a single LOD level if desired.

LMM allows several ways to import geometry: Surface,
Terrain, or Mobile. “Surfaces” must contain primary
decal textures and will have secondary light map
textures rendered and applied to them. “Terrains” are
rendered using per-vertex lighting as opposed to light
maps. This can be useful for large open areas where
there will be no shadows cast on or around them. A
“Mobile” is an object that does not cast or receive
shadows. It is mainly used for LMMs caustics effects.
It is possible to simply render a scene to vertex colors
by importing a model as a “Terrain.” In LMM, as
opposed to Creator, shadowing is taken into account
when rendering to vertex colors.

The “Patch Size” is the (inverted) meter per texel ratio
as described earlier. The dialog allows selection of
Patch Size for the entire model, but it can be adjusted on
a surface-by-surface basis in the LMM GUI.

Light Sources

The importer and exporter understand OpenFlight and
LMM light sources and palettes. Light sources can be
added in Creator and imported into LMM, and they can
be exported by LMM and read by Creator. Most light
source properties have a 1:1 correspondence between
the two programs. The light source attributes are
converted and imported or exported as described in
Table 1.

Light Map Maker Light
Source Attribute

OpeaFlight Light Source
Attribute

Ambient Color — float[4] Ambient Color — float[4]

|

Diffuse Color — float] 4] Diffuse Color — float[4]
Specular Color — float[4) Specular Color — float[4]
Position — float[3] Position — float[3]
Direction — float[3] Pitch, Yaw -2 floats -
Attenuation Factors — flom|3] | Attenuation Factors — foat[3] .
Spot Falloff — float | Spot Exponent — float

|_Type (Point, Spot Directional) T'vpe {Local. Spot. Infinite)

| Disabled Disabled
LMM Does not have a notion of Export to Realtime: Ahvays
this False
Range OpenFlight does not have the

nation of a Range value
st to 1000 an impors, not
exported.

Always

Inner, Outer Cone OpenFlight does not have the
notion of an inner and outer spot
light cone, therefore both are set
to OpenFlight Spot Spread value.
On export, Spot Spread is set to

the wider of the two values.

Table 1 - Light Source Conversions

Custom Surface Flags

Light Map Maker supports several per-surface flags that
control the light map rendering process:

e White Lightmap — Set the color of the light
map for this surface to be entirely white. This
will cause the surface to appear illuminated,
regardless of whether any light source is
affecting it. This effect is used in several of the
previously rendered scenes for signs and
awnings that are supposed to be completely
illuminated.

e No Block Ray — This surface does not block the
light source ray. In other words, the surface
can receive shadows and lighting, but does not
cast shadows.

e No Lightmap — This surface does not receive
shadows or light maps, but can cast shadows.
This is flag is used in the importer when the
surface has already been rendered in a higher
LOD level.

e Patch Size — The patch resolution in meters per
texel.

e Double Side - This has the same meaning as
the “two-sided” flag in OpenFlight.

These surface attributes are loaded and saved
appropriately through the OpenFlight importer and
exporter. Since OpenFlight does not contain surface
flags for most of the attributes above, the exporter will
save these flags to comment fields that are attached to
the individual faces in the OpenFlight file. The modeler
may modify these within Creator if desired using the
format described below.

Fields begin with “#RTI LM”, and are followed by the
desired settings. Each of the attributes contains an
identifier with a value.

e useWhiteLightmap = {0 or 1}
1 = white light map
e nolightmap = {0 or 1}
1 = no light map
¢ noElockRay = {0 or 1}
1 = do not block ray
e patchSize = {floating point number} =
meter per texel ratio

Figure 16 - LMM Comment Fields

The comment field parser will preserve any existing
comments contained in the face record, leaving them as
the “first” comment in the sequence. This helps older
software with broken comment field parsers to ignore
RT1’s comment field additions.

If nothing is specified in the comment field, the defaults
are:

. useWhiteLightmap = 0
(nc white light map)
. nolightmap = 0
(ccmpute light map for surface)
. noBlockRay = 0
(block ray on this surface)
. patchSize = Value from import dialog.

The following OpenFiight face flags also control import
options:

L3 Hidden - Causes surface to be ignored
on import.

. Twc Sided - Sets the Double Side flag
in LMM.

L3 Billboard Flags - Controls Alpha
Transparency for the surface. Actual

billboards are currently not supported
by LMM.

LMM Rendering Options

Light Map Maker provides a number of different
options when rendering Light Maps. The rendering
dialog is shown in Figure 17.

L= _ Boach ground -

Samole rmacng L whtmap Numtwer

rptiness eciificahor i — H1Aay

Figure 17 - LMM Rendering Options

Several Important options are described below:

e Ambient: The ambient color used in lighting
calculations. This value is applied to the entire
scene.

¢ Image Width, Image Height: The lightmap image
resolution. Each Light Map generated will be of
this size.

¢ Sample Spacing: This is an alternate way to specify

a global Patch Size for surfaces.

Lightmap Number: Allows the user to select the

desired number of Light Maps. If the value is zero,

the number of Light Maps will be determined by
the per-surface sample spacing and Image Width

and Height. If the value is greater than zero, LMM

will uniformly distribute the patch size across all

polygons in the scene to create that number of Light

Maps.

e Curtness Mode: When rendering with Radiosity,
Curtness Mode will run an algorithm that is six
times faster than a “full” Radiosity solution. It is
much faster, but produces a result that is not as
precise.

Scene Graph Support

RTI has tested several Scene Graphs for support of
multi-textured OpenFlight files. At this time, Scene
Graph Library (SGL) version 0.7.0 and Open Scene
Graph (OSG) version 0.9.8-2 are known to correctly
load and display multi-textured files.

Multigen-Paradigm Creator loads, displays and
manipulates the files correctly, but the “Vega Prime”
viewer that ships with Creator 3.0 does not appear to
work at all, so it is not clear whether Vega will render
the databases correctly.

Performer 3.1 for Windows (OpenFlight loader 15.7
2/1/2003) does not display the databases correctly. It
doesn’t even attempt to load the texture files, which
probably means that it does not understand OpenFlight
multi-texture records. SGI-based systems running
recent releases of Performer were not available, and
therefore not tested.

Database Special Effects

Dynamic Effects

Light Mapping is typically considered to be a “static”
effect. Light source states, angles and colors, as well as
database geometry, are pre-configured and Light Maps
are rendered. Secondary texture coordinates are
generated and this information is saved to disk.

However, there are several techniques in use that will
allow dynamic modification to Light Mapped
environments. The following methods will likely
require a shader or custom support from the Scene
Graph API, as they are not readily encoded into the
OpenFlight file format without significant geometry
duplication.

Light Source State

There are several methods that can be used to modify a
light source’s state at runtime, two of which are texture
swapping and direct texture modification.

The direct texture modification method requires
knowledge of the mapping between lumels in the Light
Map, polygons in the scene, and light sources in the
scene. With this information, Light Map lumels could
be updated dynamically based on light state changes.
This method provides a great deal of flexibility, as new
light sources could even be added at runtime. While
this method has merit, it is more complex than the
texture swapping method and requires the most support
from the application and Scene Graph API. Several
games including Quake and Half Life make use of this
technique to modify light maps on the fly.

If there are relatively few light states that need to be
encoded, the texture swapping method can be used to
provide dynamic lighting effects. Assuming a
consistent texture coordinate mapping, the texture
swapping method replaces an entire Light Map
representing one state with another Light Map
representing a second state — similar to the way other
animated texture mapping tricks operate.

This technique can be particularly effective if the
environments are “tile based” and light sources from
one tile would not affect another. This allows each tile
o be rendered individually with varylng light siate
permutations.

w
4

|
.
_"‘ :

Figure 18 - Intersection Light Map State

Figure I8 shows an example of a traffic semaphore
casting a colored haze in an intersection based on its
state. The image in the upper left of each figure shows
the portion of the Light Map representing the
intersection quad. At runtime the Scene Graph API can
be used to switch between the collection of Light Maps
for this tile.

A logical extension of this technique is to render each
tile (or database) multiple times with a varying “time of
day.” This would allow a user to specify the desired
time of day, causing the system to load the appropriate
set of texture maps to match the selection.

Specular Highlights and Environment Mapping

Given that specu.ar lighting effects are directional in
nature they can not be realistically pre-rendered into
Light Maps. Depending on the desired effect it is
possible to use a third texture unit and a Cube Map to
achieve certain view-dependent effects. Figure 19
shows an example of an exaggerated specular highlight
in a light mapped database.

o
Figure 19 - Specular Highlight

This database was rendered with a single directional
light positioned high in the north-eastern sky. Light
maps were rendered and applied, showing shadows
being cast from the buildings to the road at the
appropriate angle. A cube map was also constructed
placing the “specular component” of the directional
light source on the appropriate cube map faces. The
cube map could also have contained an environment
map if that was the desired effect. Figure 20 shows the
cube map that was used. The sphere shows how the
cube map would project into the scene, and the lower
images show the cube map faces.

HOE 4

7 et

Figure 20 - Cube Map Specular

The cube map is mapped to the geometry using the
GL_REFLECTION_MAP TexGen mode, and
GL_ADD TexEnv mode. If using the fixed function
pipeline it will likely be necessary to re-order the
texture stages to satisfy the OpenGL lighting equation in
Figure 5. It specifies that the sum of the specular and
diffuse lighting terms should be multiplied by the decal
texture, rather than the specular term being added to the
product of the diffuse and decal texture. IE:

Right:

diffuse + specular; * decal

Wrong:

decal * diffuse + specular
Caveats

When using this technique there are several things to
consider. Specular highlights will generally not appear
within shadows, and local light sources do not remain at
a fixed relative angle to the view vector. Infinite
directional lights, such as the Sun, work well because by
definition they do stay at a fixed relative angular
position to the viewing vector.

Half Life 2 pre-renders a cube map containing specular
highlights and environment for each “room” within a
level, from a fixed position. The specular highlights are
technically only correct from that fixed position, but this
is not usually evident during game play. This same
technique could be used in a VisSim database to provide
reasonable directional lighting effects.

Other Dynamic Effects

RTI is currently investigating several other dynamic
techniques for use with Light Mapping including
Virtualized OpenGL Light Sources, Headlight Effects
and Texture Sampling to determine when an entity is
“in-shadow.” These efforts are ongoing, and will not be
presented here.

Static Effects

Soft Coronas

Coronas are the fuzzy auras that appear around bright
light sources, especially at night. They occur due to
light refraction from particles in the air or from viewing
the light through glass. In addition to the natural
expectation that coronas will be present, they also
provide some locality to light sources in that they help
the user position the light source in space.

While there is a mathematical relationship between the
size of the corona, the density of any water particles
around the light source, and which “ring” the particle is
in (using certain approximations), simulating coronas
mathematically would be expensive. Instead, a suitable
soft corona image texture can be used. Figure 21 shows
one such corona image.

Figure 21 - Corona Texture

A plethora of corona texture maps can be found on the
internet.

Soft coronas can be implemented using OpenGL'’s
“Point Sprite” and “Point Parameters” extensions.
These extensions allow OpenGL points to be textured
and size attenuated based on distance from the viewer.
Alternatively, the corona geometry could be added as a
billboarded quad.

As the OpenFlight file is loaded, coronas are placed at
the origin of each light source found in the database.
The vertex colors of the corona are set to match the light
source diffuse color, and its size is attenuated using the
OpenFlight attenuation parameters.

Scenes with and without coronas are shown in Figure
22.

W jritiadell oaiter

BB testModell oader IEI[EIE!

Figure 22 — With/Without Corona Effects

The scene contains six light sources, but this is not
evident from the upper image due to the fact that the
terrain below the light sources is not visible from this
distance. In these scenes the corona geometry is drawn
after all other geometry to make it appear to “shine
through™ the environment, as it would in real life.
Randomness to the size of the geometry, as well as
small variations in the color of the light sources can add
additional realism to the scene.

Conclusion

Light Mapping is an efficient lighting technique that can
be readily applied to OpenFlight databases and today’s
Image Generatior hardware. Several popular Open
Source Scene Graphs, as well as several proprietary
ones. support the multi-texturing effects required to
achieve Light Mapping with OpenFlight files. Offline
tools are available to allow databases to be pre-rendered
to include diffuse lighting effects from potentially
thousands of ligat sources. Runtime cost of the
technique remains constant regardless of the number of
light sources. Databases may be rendered multiple
times to provide “time of day™ and other light state
effects.

